NAG Toolbox for MATLAB

f07pn

1 Purpose

f07pn computes the solution to a complex system of linear equations

$$AX = B$$
,

where A is an n by n Hermitian matrix stored in packed format and X and B are n by r matrices.

2 Syntax

```
[ap, ipiv, b, info] = f07pn(uplo, ap, b, 'n', n, 'nrhs_p', nrhs_p)
```

3 Description

f07pn uses the diagonal pivoting method to factor A as $A = UDU^{H}$ if **uplo** = 'U' or $A = LDL^{H}$ if **uplo** = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, D is Hermitian and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is then used to solve the system of equations AX = B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D 1999 *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Higham N J 2002 Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Parameters

5.1 Compulsory Input Parameters

1: **uplo – string**

If uplo = 'U', the upper triangle of A is stored.

If $\mathbf{uplo} = 'L'$, the lower triangle of A is stored.

Constraint: uplo = 'U' or 'L'.

2: ap(*) - complex array

Note: the dimension of the array **ap** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The n by n Hermitian matrix A, packed by columns.

More precisely,

if **uplo** = 'U', the upper triangle of A must be stored with element A_{ij} in $\mathbf{ap}(i+j(j-1)/2)$ for i < i:

if **uplo** = 'L', the lower triangle of A must be stored with element A_{ij} in $\mathbf{ap}(i+(2n-j)(j-1)/2)$ for $i \ge j$.

3: b(ldb,*) - complex array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

[NP3663/21] f07pn.1

f07pn NAG Toolbox Manual

The second dimension of the array must be at least max(1, nrhs p)

Note: To solve the equations Ax = b, where b is a single right-hand side, **b** may be supplied as a one-dimensional array with length $\mathbf{ldb} = \max(1, \mathbf{n})$.

The n by r right-hand side matrix B.

5.2 Optional Input Parameters

1: n - int32 scalar

n, the number of linear equations, i.e., the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

2: nrhs p - int32 scalar

Default: The second dimension of the array b.

r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: **nrhs** $\mathbf{p} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

1dh

5.4 Output Parameters

1: ap(*) - complex array

Note: the dimension of the array **ap** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A = UDU^{H}$ or $A = LDL^{H}$ as computed by f07pr, stored as a packed triangular matrix in the same storage format as A.

2: ipiv(*) - int32 array

Note: the dimension of the array **ipiv** must be at least $max(1, \mathbf{n})$.

Details of the interchanges and the block structure of D, as determined by f07pr.

Rows and columns k and ipiv(k) were interchanged, and D(k,k) is a 1 by 1 diagonal block.

uplo = 'U' and **ipiv**
$$(k)$$
 = **ipiv** $(k-1)$ < 0

Rows and columns k-1 and $-\mathbf{ipiv}(k)$ were interchanged and D(k-1:k,k-1:k) is a 2 by 2 diagonal block.

uplo = 'L' and **ipiv**
$$(k)$$
 = **ipiv** $(k + 1) < 0$

Rows and columns k+1 and $-\mathbf{ipiv}(k)$ were interchanged and D(k:k+1,k:k+1) is a 2 by 2 diagonal block.

3: b(ldb,*) – complex array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

Note: To solve the equations Ax = b, where b is a single right-hand side, **b** may be supplied as a one-dimensional array with length $\mathbf{ldb} = \max(1, \mathbf{n})$.

If info = 0, the *n* by *r* solution matrix *X*.

f07pn.2 [NP3663/21]

4: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

info = -i

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: uplo, 2: n, 3: nrhs_p, 4: ap, 5: ipiv, 6: b, 7: ldb, 8: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info > 0

If **info** = i, d_{ii} is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, \hat{x} , satisfies an equation of the form

$$(A+E)\hat{x}=b$$
,

where

$$||E||_1 = O(\epsilon)||A||_1$$

and ϵ is the *machine precision*. An approximate error bound for the computed solution is given by

$$\frac{\|\hat{x} - x\|_1}{\|x\|_1} \le \kappa(A) \frac{\|E\|_1}{\|A\|_1},$$

where $\kappa(A) = \|A^{-1}\|_1 \|A\|_1$, the condition number of A with respect to the solution of the linear equations. See Section 4.4 of Anderson *et al.* 1999 and Chapter 11 of Higham 2002 for further details.

f07pp is a comprehensive LAPACK driver that returns forward and backward error bounds and an estimate of the condition number. Alternatively, f04cj solves Ax = b and returns a forward error bound and condition estimate. f04cj calls f07pn to solve the equations.

8 Further Comments

The total number of floating-point operations is approximately $\frac{4}{3}n^3 + 8n^2r$, where r is the number of right-hand sides

The real analogue of this function is f07pa.

9 Example

```
uplo = 'U';
ap = [complex(-1.84, +0);
    complex(0.11, -0.11);
    complex(-4.63, +0);
    complex(-1.78, -1.18);
    complex(-1.84, +0.03);
    complex(-8.86999999999999, +0);
    complex(3.91, -1.5);
    complex(2.21, +0.21);
```

[NP3663/21] f07pn.3

f07pn NAG Toolbox Manual

```
complex(1.58, -0.9);
    complex(-1.36, +0)];
b = [complex(2.98, -10.18);
    complex(-9.58, +3.88);
    complex(-0.77, -16.05);
    complex(7.79, +5.48)];
[apOut, ipiv, bOut, info] = f07pn(uplo, ap, b)
apOut =
   -7.1028
    0.2997 + 0.1578i
   -5.4176
    0.3397 + 0.0303i
    0.5637 + 0.2850i
    -1.8400
   -0.1518 + 0.3743i
     0.3100 + 0.0433i
    3.9100 - 1.5000i
   -1.3600
ipiv =
                  1
                 2
                 -1
                 -1
bOut =
     2.0000 + 1.0000i
3.0000 - 2.0000i
    -1.0000 + 2.0000i
     1.0000 - 1.0000i
info =
                  0
```

f07pn.4 (last) [NP3663/21]